Coherent Obstruction Theory of Spectral Algebras

1 Square-Zero extensions of discrete rings Linearize

A central phenomenon uncovered in the deformation/obstruction theory of
discrete rings (in the tradition of Artin, Illusie, Hartshorne, ...) is that the
a priori geometric/non-linear theory of square-zero extensions linearizes:

{Square zero extensions of R by I} ~ Mapp g (Lg, X1).

To drive home the point about linearity, observe that the LHS is a priori
a groupoid. The RHS, being mapping space in a stable co-category, has the
structure of an E., group. That is, this equivalence tells us that it makes
sense to “add” square zero extensions and “scale” square zero extensions
by elements of R — that there’s an operation building new square-zero
extensions from old ones by taking R-linear superpositions/weighted sums.

2 “Bounded” extensions of ring spectra also lin-
earize

The same phenomenon occurs when the square-zero ideal I has bounded
Postnikov amplitude, by work of Basterra-Mandell and Lurie.

Theorem 2.1 (Lurie, (HA Thm. 7.4.1.23, Defn. 7.4.1.18)).
{Square zero extensions A — R by I't ~ Mappg)(Lr,21),

granted that A is connective and I has homotopy groups concentrated in
degree range [n, 2n].

This note explores what happens when the strong connectivity and trun-
cation constraints here do not hold. Examples: MU, THH (F,), ---



3 Coherent square-zero extensions

Definition 3.1 (Square Zero Extensions). Let
e O be a coherent stable operad (in the sense of HA chapter 5),

e V¥ € CAlg(Modg,(Prl)) be a presentably symmetric monoidal sta-
ble co-category,

e Ac Alg®(V) be an O-algebra in V.

A (coherent) square-zero extension of A is the data of a pair (R, #), where

e R € Algo(m), i.e. an O-algebra in complete filtered objects of V/,
e 0:gr°(R) = A an equivalence in Alg®(V),

e and R is required to satisfy the additional property gr?(R) = 0 for all

q ¢ {0,1}.

In this situation, we say that (R, ) is a square-zero extension of A by gr'R.

Footnotes

e Presentability: I’'m not sure if the presentability assumption on V is
strictly necessary. It’s possible that I'm asking for it because (1) the
simple expression Fily ~ Fil ®g, V simplifies our arguments, and (2)
all our examples will be presentable.

e Attribution: I learned this from Tyler Lawson, but it might have a
longer history, e.g. in model-structures approaches to Smith Ideals.

3.1 What do Square Zero Extensions Look Like?

Remark 3.2 (Underlying filtrations of square zero extensions). The com-
bination of the conditions

e that the associated graded of R is concentrated in degrees 0 and 1,
e that the filtration on R is complete

forces the underlying filtered object of R to be of the form
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where [ sits in degree 1, mapping to an R in degree 0 via the map f, and
we have an equivalence

coFib(f) ~ A.

The objects I and R here have additional structures:

e gr'(R) ~ I has the structure of a module over the algebra gr'(R) ~ A,
hence, the object I € V sitting in degree 1 has the structure of an
A-module. Here and already before this point, we’ve used extensively
that gr® and gr® are symmetric monoidal functors, among other salient
properties about filtrations and gradings. These salient properties can
be summarized by that gr : Fil — Gr is the universal perverse schober,
a theorem of Gammage-Hilburn-Mazel-Gee.

e the O-algebra structure on R induces a O-algebra structure on the 0-
th degree term of the filtration R(0) ~ R, as the functor (—)(0) is lax
symmetric monoidal. We can also see this from that the “converges-to
functor” (—)(—o0) is lax symmetric monoidal.

In short, a square-zero extension of an O-algebra A by an (O-operadic)
A-module [ is given by

e an (D-algebra R,
e a map of algebras R — A whose kernel is the A-module I,

e some additional coherence data. We’ll see later that this data precisely
encodes what it means for I to be “square-zero” in higher algebra.

Remark 3.3 (Square zero extensions as 1-term coherent cochains). By the
correspondence between complete filtered spectra and homotopy coherent
cochains (whose strongest modern version was proved by Ariotta), the above
description of the filtration tells us that a coherent extension of A is an
algebra in coherent cochains whose underlying cochain object looks like
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This encodes the idea of a derivation valued in I.
TODO: explain the degree shift in terms of the universal property of S(1)[1] €
Fil.



4 Linearization of coherent square-zero extensions
For discrete rings, we saw that

e the non-linear/geometric/“commutative” data of a square-zero
thickening ring map

e is converted to
e the linear /representation-theoretic/“non-commutative” data.
By our discussion above, we see that

e the non-linear data is the filtered algebra description (encodes coher-
ences on a ring map),

e the linear data is the coherent cochains description (encodes struc-
ture on a derivation),

e the conversion is performed by the Ariotta correspondence.

The lesson we learn from this is that by passing to a more coherent
version of the notion of square-zero extension we get to classify square-
zero extensions of arbitrary ring spectra, using an argument where neither
connectivity or truncatedness assumptions are needed. Contrast this to the
situation in HA where square-zeroness is defined for maps with connective
fibers, and there it’s defined as a condition ().
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